Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4-Amino-3-phenyl-5-thioxo-4,5-dihydro-1*H*-1,2,4-triazol-1-yl)triphenyltin(IV)

Qingfeng Wang, Rufen Zhang* and Lingyun Du

Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: macl@lcu.edu.cn

Received 29 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.051; wR factor = 0.122; data-to-parameter ratio = 14.1.

In the title complex, $[Sn(C_6H_5)_3(C_8H_7N_4S)]$, all bond lengths and angles show normal values. The Sn centre is fourcoordinated by three C atoms [Sn-C 2.119 (6)-2.133 (6) Å]and one N atom [Sn-N 2.107 (5) Å] in a distorted tetrahedral geometry. The crystal packing exhibits no classical intermolecular hydrogen bonds.

Related literature

For related literature, see: Dubey & Roy (2003); Gielen (2002); Li et al. (2005).

Experimental

Crystal data

$[Sn(C_6H_5)_3(C_8H_7N_4S)]$	
$M_r = 541.23$	
Triclinic, P1	

a = 8.964 (8) Å b = 9.656 (8) Å c = 15.481 (13) Å

```
\alpha = 84.423 (10)^{\circ}

\beta = 86.911 (10)^{\circ}

\gamma = 63.110 (8)^{\circ}

V = 1189.4 (18) \text{ Å}^{3}

Z = 2
```

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.537, T_{max} = 0.601$ (expected range = 0.507–0.567)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.122$ S = 1.004066 reflections 289 parameters 5879 measured reflections 4066 independent reflections 2892 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 1.09 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.92 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (grant No. 20271025) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2338).

References

Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.

Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.

Li, Y.-X., Zhang, R.-F. & Ma, C.-L. (2005). Acta Cryst. E61, m2365-m2366.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

metal-organic compounds

Mo $K\alpha$ radiation $\mu = 1.18 \text{ mm}^{-1}$

 $0.60 \times 0.54 \times 0.48 \text{ mm}$

T = 293 (2) K

Acta Cryst. (2007). E63, m2959 [doi:10.1107/S1600536807055560]

(4-Amino-3-phenyl-5-thioxo-4,5-dihydro-1*H*-1,2,4-triazol-1-yl)triphenyltin(IV)

Q. Wang, R. Zhang and L. Du

Comment

In recent years, organotin complexes have been attracting more and more attention for their wide industrial applications and biological activities (Dubey & Roy, 2003). In order to explore the relationships between the properties and structures, a large number of organotin complexes have been prepared (Gielen, 2002). We report here the structure of the title mononuclear Sn(IV) complex, (I).

The molecular structure of complex (I) is shown in Fig. 1. Sn1 is four-coordinated in a distorted tetrahedron geometry. The Sn—N bond distance is comparable to that found in [phenyl-tris(pyrimidine-2-thiolato)tin(IV)] (Li *et al.*, 2005). The bond angles at the Sn1 atom range from 99.9 (2) to 110.7 (2)°. The crystal packing exhibits no classical intermolecular hydrogen bonds.

Experimental

The reaction was carried out under nitrogen atmoshpere. 4-Amino-5-phenyl-4*H*-1,2,4-triazole-3-thiol (0.192 g, 1 mmol) was added to the solution of benzene (30 ml) with sodium ethoxide (0.68 g, 1 mmol) in a Schlenk flask. After stirring for 10 min, triphenyltin chloride (0.385 g, 1 mmol) was added to the mixture. The mixture was kept at 313 K for 12 h. After cooling down to the room temperature, the solution was filtered. The solvent of the filtrate was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from diethyl ether. Colourless single crystals of the title complex were obtained after one week. Yield, 87%. Analysis calculated for $C_{26}H_{22}N_4S_1Sn_1$: C 57.70, H 4.10, N, 10.35; found: C 57.91, H 4.29, N, 10.09. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement

All H atoms were placed in geometrically idealized positions (C—H = 0.93 Å and N—H = 0.86 Å) and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms omitted for clarity.

Triphenyl(4-amino-5-phenyl-4*H*-1,2,4-triazole-3-thiol- κN^2)tin(IV)

Crystal data

$[Sn(C_6H_5)_3(C_8H_7N_4S)]$	Z = 2
$M_r = 541.23$	$F_{000} = 544$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.511 {\rm ~Mg~m}^{-3}$
Hall symbol: -P1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.964 (8) Å	Cell parameters from 2210 reflections
b = 9.656 (8) Å	$\theta = 2.4 - 23.8^{\circ}$
c = 15.481 (13) Å	$\mu = 1.18 \text{ mm}^{-1}$
$\alpha = 84.423 \ (10)^{\circ}$	T = 293 (2) K
$\beta = 86.911 \ (10)^{\circ}$	Block, colourless
$\gamma = 63.110 \ (8)^{\circ}$	$0.60 \times 0.54 \times 0.48 \ mm$
$V = 1189.4 (18) \text{ Å}^3$	

Data collection

Siemens SMART CCD area-detector diffractometer	4066 independent reflections
Radiation source: fine-focus sealed tube	2892 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 293(2) K	$\theta_{max} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 10$
$T_{\min} = 0.537, T_{\max} = 0.601$	$k = -11 \rightarrow 11$
5879 measured reflections	$l = -18 \rightarrow 17$

Refinement

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.051$

 $wR(F^2) = 0.122$

S = 1.00

4066 reflections

289 parameters

1 restraint

sup-2

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} = 0.001$

$$\Delta \rho_{\text{max}} = 1.09 \text{ e } \text{\AA}^{-3}$$
$$\Delta \rho_{\text{min}} = -0.92 \text{ e } \text{\AA}^{-3}$$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sn1	0.23422 (6)	0.73462 (6)	0.79295 (3)	0.03700 (19)
N1	0.1773 (7)	0.6966 (6)	0.6698 (3)	0.0366 (13)
N2	0.2770 (7)	0.5565 (6)	0.6339 (3)	0.0416 (14)
N3	0.0812 (7)	0.7134 (6)	0.5445 (3)	0.0364 (13)
N4	-0.0199 (8)	0.7765 (7)	0.4711 (3)	0.0560 (18)
H4A	-0.0001	0.7230	0.4269	0.067*
H4B	-0.1018	0.8687	0.4702	0.067*
S1	-0.0960 (2)	0.9684 (2)	0.63727 (13)	0.0499 (5)
C1	0.0562 (8)	0.7946 (8)	0.6174 (4)	0.0348 (16)
C2	0.2143 (8)	0.5715 (8)	0.5573 (4)	0.0375 (16)
C3	0.2865 (9)	0.4439 (8)	0.4994 (4)	0.0416 (17)
C4	0.2067 (10)	0.4278 (9)	0.4301 (4)	0.053 (2)
H4	0.1001	0.5052	0.4158	0.063*
C5	0.2786 (12)	0.3024 (11)	0.3821 (5)	0.061 (2)
Н5	0.2230	0.2981	0.3342	0.073*
C6	0.4307 (13)	0.1835 (10)	0.4034 (6)	0.070 (3)
Н6	0.4776	0.0956	0.3722	0.084*
C7	0.5135 (12)	0.1961 (10)	0.4718 (6)	0.073 (3)
H7	0.6190	0.1173	0.4867	0.088*
C8	0.4400 (11)	0.3256 (9)	0.5185 (5)	0.060 (2)
H8	0.4978	0.3321	0.5648	0.072*
С9	0.0375 (8)	0.7371 (7)	0.8760 (4)	0.0331 (15)
C10	-0.0341 (9)	0.6419 (9)	0.8663 (5)	0.053 (2)
H10	-0.0005	0.5783	0.8205	0.064*
C11	-0.1562 (9)	0.6389 (10)	0.9236 (6)	0.066 (2)
H11	-0.2037	0.5730	0.9163	0.079*
C12	-0.2080 (10)	0.7327 (11)	0.9915 (6)	0.068 (2)
H12	-0.2900	0.7304	1.0303	0.082*
C13	-0.1382 (11)	0.8281 (11)	1.0009 (5)	0.070 (3)
H13	-0.1730	0.8925	1.0463	0.084*
C14	-0.0169 (9)	0.8311 (8)	0.9445 (4)	0.0459 (18)
H14	0.0299	0.8974	0.9523	0.055*
C15	0.2901 (7)	0.9268 (7)	0.7841 (4)	0.0302 (15)

C16	0.1941 (9)	1.0706 (8)	0.7417 (5)	0.0481 (19)
H16	0.0926	1.0906	0.7178	0.058*
C17	0.2463 (10)	1.1841 (9)	0.7344 (5)	0.061 (2)
H17	0.1796	1.2803	0.7056	0.073*
C18	0.3940 (11)	1.1589 (10)	0.7684 (5)	0.064 (2)
H18	0.4290	1.2365	0.7629	0.077*
C19	0.4886 (10)	1.0189 (11)	0.8105 (6)	0.064 (2)
H19	0.5893	1.0007	0.8345	0.077*
C20	0.4395 (8)	0.9031 (9)	0.8184 (5)	0.0486 (19)
H20	0.5075	0.8074	0.8473	0.058*
C21	0.4577 (8)	0.5244 (7)	0.8192 (4)	0.0346 (16)
C22	0.4786 (9)	0.4393 (9)	0.8978 (5)	0.0482 (19)
H22	0.3958	0.4741	0.9404	0.058*
C23	0.6228 (11)	0.3018 (10)	0.9135 (6)	0.071 (3)
H23	0.6360	0.2426	0.9662	0.085*
C24	0.7458 (10)	0.2530 (11)	0.8516 (7)	0.075 (3)
H24	0.8437	0.1615	0.8626	0.089*
C25	0.7260 (10)	0.3372 (10)	0.7739 (6)	0.068 (2)
H25	0.8097	0.3024	0.7317	0.081*
C26	0.5835 (8)	0.4730 (9)	0.7575 (5)	0.051 (2)
H26	0.5714	0.5310	0.7044	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0371 (3)	0.0410 (3)	0.0347 (3)	-0.0189 (2)	0.0001 (2)	-0.0043 (2)
N1	0.042 (3)	0.041 (4)	0.027 (3)	-0.019 (3)	-0.002 (3)	-0.006 (3)
N2	0.048 (4)	0.037 (4)	0.035 (3)	-0.015 (3)	-0.006 (3)	0.000 (3)
N3	0.045 (4)	0.040 (4)	0.027 (3)	-0.022 (3)	-0.009 (3)	0.004 (3)
N4	0.080 (5)	0.050 (4)	0.032 (3)	-0.022 (4)	-0.020 (3)	-0.002 (3)
S1	0.0490 (12)	0.0419 (12)	0.0570 (12)	-0.0176 (10)	-0.0044 (9)	-0.0086 (10)
C1	0.042 (4)	0.041 (4)	0.031 (4)	-0.028 (4)	0.000 (3)	0.001 (3)
C2	0.046 (4)	0.036 (4)	0.035 (4)	-0.023 (4)	0.000 (3)	-0.002 (3)
C3	0.050 (5)	0.044 (5)	0.036 (4)	-0.026 (4)	0.010 (3)	-0.007 (3)
C4	0.067 (5)	0.067 (6)	0.043 (5)	-0.046 (5)	0.010 (4)	-0.014 (4)
C5	0.091 (7)	0.077 (7)	0.044 (5)	-0.062 (6)	0.022 (5)	-0.026 (5)
C6	0.113 (8)	0.053 (6)	0.059 (6)	-0.050 (6)	0.036 (6)	-0.028 (5)
C7	0.081 (6)	0.053 (6)	0.069 (6)	-0.014 (5)	0.014 (5)	-0.021 (5)
C8	0.076 (6)	0.057 (6)	0.051 (5)	-0.031 (5)	0.007 (4)	-0.017 (4)
С9	0.037 (4)	0.031 (4)	0.029 (4)	-0.014 (3)	-0.009 (3)	0.004 (3)
C10	0.044 (5)	0.063 (5)	0.061 (5)	-0.031 (4)	0.004 (4)	-0.012 (4)
C11	0.047 (5)	0.078 (7)	0.091 (7)	-0.047 (5)	0.001 (5)	0.004 (5)
C12	0.051 (5)	0.083 (7)	0.073 (6)	-0.036 (5)	0.016 (5)	0.004 (5)
C13	0.066 (6)	0.083 (7)	0.056 (6)	-0.029 (5)	0.027 (5)	-0.022 (5)
C14	0.047 (5)	0.049 (5)	0.047 (5)	-0.026 (4)	0.008 (4)	-0.011 (4)
C15	0.025 (3)	0.037 (4)	0.030 (4)	-0.014 (3)	0.007 (3)	-0.012 (3)
C16	0.042 (4)	0.045 (5)	0.059 (5)	-0.019 (4)	-0.015 (4)	-0.004 (4)
C17	0.075 (6)	0.043 (5)	0.070 (6)	-0.032 (5)	-0.016 (5)	0.007 (4)

C18	0.087 (7)	0.065 (6)	0.066 (6)	-0.055 (6)	-0.004(5)	-0.009 (5)
C19	0.050 (5)	0.076 (7)	0.081 (6)	-0.039 (5)	-0.014 (5)	-0.012 (5)
C20	0.041 (4)	0.049 (5)	0.061 (5)	-0.024 (4)	-0.012 (4)	-0.002 (4)
C21	0.031 (4)	0.033 (4)	0.043 (4)	-0.018 (3)	-0.003 (3)	-0.004 (3)
C22	0.042 (4)	0.059 (5)	0.036 (4)	-0.016 (4)	-0.004 (3)	0.003 (4)
C23	0.076 (7)	0.069 (6)	0.052 (5)	-0.023 (5)	-0.024 (5)	0.024 (5)
C24	0.042 (5)	0.069 (6)	0.084 (7)	-0.001 (5)	-0.014 (5)	0.006 (6)
C25	0.043 (5)	0.063 (6)	0.072 (6)	-0.005 (4)	0.004 (4)	0.003 (5)
C26	0.035 (4)	0.051 (5)	0.054 (5)	-0.011 (4)	0.007 (4)	0.007 (4)
Geometric J	parameters (Å, °)					
Sn1N1		2 107 (5)	C11	C12	13	375 (11)
Sn1 - C0		2.107 (5)	C11		1)300
Sn1 - C15		2.119 (6)	C12		1.3	×49 (11)
Sn1 - C21		2.120 (0)	C12	—H12	1)300
$\frac{1}{10000000000000000000000000000000000$		2.133 (0)	C12	1112 	0	266 (10)
NI-CI NI N2		1.322(8) 1.301(7)	C13	—С14 H13	1.2	300 (10)
N1 - N2		1.391 (7)	C13	—птэ цта	0.5	200
N2-C2		1.307 (8)	C14		0.5	270 (0)
$N_3 - C_2$		1.334 (8)	C15		1	979 (9) 280 (0)
N3-C1 N2 N4		1.307(7)	C15		1	960 (9) 266 (10)
NA 114A		1.401 (7)	C10	—С17 Ц16	1.2	300 (10)
N4—114A		0.860	C10		0.5	7300 260 (11)
N4—114D		1.660(7)	C17		1.2	300 (11)
SI = CI		1.000(7)	C1/-	—III /	0.5	7500 750 (11)
$C_2 = C_3$		1.474(9) 1.257(10)	C18	—С19 Ц19	1.2)30(11)
$C_3 = C_4$		1.337(10) 1.270(0)	C16		0.5	268 (10)
$C_3 - C_4$		1.379(9)	C19	—C20 Ц10	1.2)200
C4 - C3		0.0200	C19	—П19 Н20	0.9	7300 0300
С4—п4		0.9500	C20	—H20 С22	0.5	7300 771 (0)
$C_5 = U_5$		1.358 (12)	C21		1.2	971 (9) 270 (0)
С5—Н5		0.9300	C21		1.2) /9 (9) 282 (10)
$C_0 - C_1$		1.3/1 (11)	C22		1.2)85 (10))200
C0—H0		0.9300	C22	—H22	0.9	7500 264 (11)
C7C8		1.378 (10)	C23		1.2	904 (11) 9200
C/-H/		0.9300	C23	—H23	0.9	7500 75((12)
		1.260 (0)	C24	U23	1.2)30 (12)
C9 - C10		1.300 (9)	C24	—п24	0.5	7500 760 (10)
C_{3} C_{14}		1.364 (6)	C25		1))))))))))))
C10—C11		0.0200	C25	—п25 ц26	0.5	200
	20	0.9300	C20	—H20	0.5	·300
NI—SnI—C	<u>.</u> 9	105.3 (2)	C12	-CII-HII	11	9.7
NI—Snl—(015	110.6 (2)	C10	-CII-HII	11	9./
C9—Snl—C	015	119.5 (2)	C13		11	8.9 (7)
NI—SnI—(021	99.9 (2)	C13		12	0.5
C9—Sn1—C	621	110.3 (3)	Cll		12	0.5
CI5—SnI—	-021	109.4 (2)	C12		12	0.8 (8)
CI—NI—N	2	112.5 (5)	C12		11	9.6
CI - NI - SI	nı	127.6 (4)	C14		11	9.6

N2—N1—Sn1	119.8 (4)	C13—C14—C9	121.2 (7)
C2—N2—N1	105.0 (5)	C13—C14—H14	119.4
C2—N3—C1	109.3 (5)	C9—C14—H14	119.4
C2—N3—N4	128.1 (5)	C16—C15—C20	117.3 (6)
C1—N3—N4	122.5 (6)	C16-C15-Sn1	125.1 (4)
N3—N4—H4A	120.0	C20-C15-Sn1	117.4 (5)
N3—N4—H4B	120.0	C17—C16—C15	120.8 (6)
H4A—N4—H4B	120.0	С17—С16—Н16	119.6
N1—C1—N3	103.4 (6)	C15—C16—H16	119.6
N1—C1—S1	127.9 (5)	C18—C17—C16	121.2 (8)
N3—C1—S1	128.6 (5)	С18—С17—Н17	119.4
N2—C2—N3	109.8 (5)	С16—С17—Н17	119.4
N2—C2—C3	121.0 (6)	C19—C18—C17	118.5 (7)
N3—C2—C3	129.2 (6)	С19—С18—Н18	120.7
C8—C3—C4	116.2 (7)	С17—С18—Н18	120.7
C8—C3—C2	118.0 (6)	C18—C19—C20	121.4 (7)
C4—C3—C2	125.6 (7)	С18—С19—Н19	119.3
C5—C4—C3	122.2 (8)	C20—C19—H19	119.3
С5—С4—Н4	118.9	C19—C20—C15	120.7 (7)
C3—C4—H4	118.9	C19—C20—H20	119.6
C6—C5—C4	120.7 (8)	C15—C20—H20	119.6
С6—С5—Н5	119.6	$C^{22} - C^{21} - C^{26}$	119.2 (6)
C4—C5—H5	119.6	$C_{22} = C_{21} = S_{20}$	120.5(5)
$C_{5} - C_{6} - C_{7}$	118.5 (7)	$C_{26} = C_{21} = S_{n1}$	120.3(5)
C5—C6—H6	120.8	$C_{21} - C_{22} - C_{23}$	120.0(7)
C7—C6—H6	120.8	$C_{21} = C_{22} = C_{23}$	120.0
C_{6} C_{7} C_{8}	119.9 (9)	C_{23} C_{22} H_{22}	120.0
С6—С7—Н7	120.1	$C_{23} = C_{23} = C_{23}$	119.9 (8)
$C_{0} = C_{1} = H_{1}$	120.1	C24—C23—H23	120.1
$C_{3}^{2} - C_{8}^{2} - C_{7}^{2}$	120.1	$C_{22} = C_{23} = H_{23}$	120.1
$C_3 C_8 H_8$	1122.5 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.1
C_{3} C_{8} H_{8}	118.8	$C_{23} = C_{24} = C_{23}$	120.3 (8)
$C_{10} = C_{0} = C_{14}$	117.0 (6)	$C_{23} = C_{24} = H_{24}$	119.8
$C_{10} = C_{20} = C_{14}$	117.3(0) 121.2(5)	$C_{23} = C_{24} = 1124$	119.0
$C_{10} = C_{20} = S_{11}$	121.5(5)	$C_{24} = C_{25} = C_{20}$	120.3 (8)
$C_{14} = C_{9} = S_{11}$	120.7(3)	$C_{24} = C_{25} = H_{25}$	119.0
$C_{9} = C_{10} = C_{11}$	120.7 (7)	$C_{20} = C_{23} = H_{23}$	119.8
$C_{9} = C_{10} = H_{10}$	119.7	$C_{23} = C_{20} = C_{21}$	120.2 (7)
C11-C10-H10	119.7	$C_{23} - C_{26} - H_{26}$	119.9
C12—C11—C10	120.5 (7)	C21—C26—H26	119.9
C9—Sn1—N1—C1	71.0 (6)	C15—Sn1—C9—C14	-21.9 (6)
C15—Sn1—N1—C1	-59.4 (6)	C21—Sn1—C9—C14	106.2 (6)
C21—Sn1—N1—C1	-174.6 (5)	C14—C9—C10—C11	-0.5 (11)
C9—Sn1—N1—N2	-111.5 (5)	Sn1—C9—C10—C11	176.6 (6)
C15—Sn1—N1—N2	118.1 (5)	C9—C10—C11—C12	0.3 (12)
C21—Sn1—N1—N2	2.9 (5)	C10-C11-C12-C13	0.3 (13)
C1—N1—N2—C2	0.4 (7)	C11—C12—C13—C14	-0.5 (14)
Sn1—N1—N2—C2	-177.5 (4)	C12—C13—C14—C9	0.2 (13)
N2—N1—C1—N3	-0.5 (7)	C10-C9-C14-C13	0.3 (11)
Sn1—N1—C1—N3	177.1 (4)	Sn1—C9—C14—C13	-176.9 (6)

N2—N1—C1—S1	175.9 (5)	N1—Sn1—C15—C16	48.9 (6)
Sn1—N1—C1—S1	-6.4 (9)	C9—Sn1—C15—C16	-73.5 (6)
C2—N3—C1—N1	0.5 (7)	C21—Sn1—C15—C16	158.0 (5)
N4—N3—C1—N1	-179.0 (5)	N1—Sn1—C15—C20	-126.6 (5)
C2—N3—C1—S1	-176.0 (5)	C9—Sn1—C15—C20	111.0 (5)
N4—N3—C1—S1	4.5 (9)	C21—Sn1—C15—C20	-17.5 (6)
N1—N2—C2—N3	-0.1 (7)	C20-C15-C16-C17	0.1 (10)
N1—N2—C2—C3	-179.2 (6)	Sn1-C15-C16-C17	-175.5 (5)
C1—N3—C2—N2	-0.2 (7)	C15-C16-C17-C18	0.0 (12)
N4—N3—C2—N2	179.3 (6)	C16—C17—C18—C19	-0.4 (13)
C1—N3—C2—C3	178.8 (6)	C17—C18—C19—C20	0.6 (13)
N4—N3—C2—C3	-1.7 (11)	C18—C19—C20—C15	-0.5 (12)
N2—C2—C3—C8	-14.5 (10)	C16-C15-C20-C19	0.2 (10)
N3—C2—C3—C8	166.6 (7)	Sn1-C15-C20-C19	176.0 (5)
N2-C2-C3-C4	160.5 (7)	N1—Sn1—C21—C22	-132.2 (5)
N3—C2—C3—C4	-18.4 (11)	C9—Sn1—C21—C22	-21.7 (6)
C8—C3—C4—C5	-1.5 (11)	C15—Sn1—C21—C22	111.7 (5)
C2—C3—C4—C5	-176.6 (7)	N1—Sn1—C21—C26	48.3 (6)
C3—C4—C5—C6	3.0 (12)	C9—Sn1—C21—C26	158.8 (5)
C4—C5—C6—C7	-3.0 (13)	C15—Sn1—C21—C26	-67.8 (6)
C5—C6—C7—C8	1.6 (13)	C26—C21—C22—C23	-1.6 (10)
C4—C3—C8—C7	0.1 (12)	Sn1—C21—C22—C23	178.9 (6)
C2—C3—C8—C7	175.6 (7)	C21—C22—C23—C24	1.6 (12)
C6—C7—C8—C3	-0.1 (14)	C22—C23—C24—C25	-1.2 (14)
N1—Sn1—C9—C10	36.1 (6)	C23—C24—C25—C26	0.9 (14)
C15—Sn1—C9—C10	161.1 (5)	C24—C25—C26—C21	-0.9 (12)
C21—Sn1—C9—C10	-70.9 (6)	C22—C21—C26—C25	1.3 (10)
N1—Sn1—C9—C14	-146.9 (5)	Sn1—C21—C26—C25	-179.2 (6)

